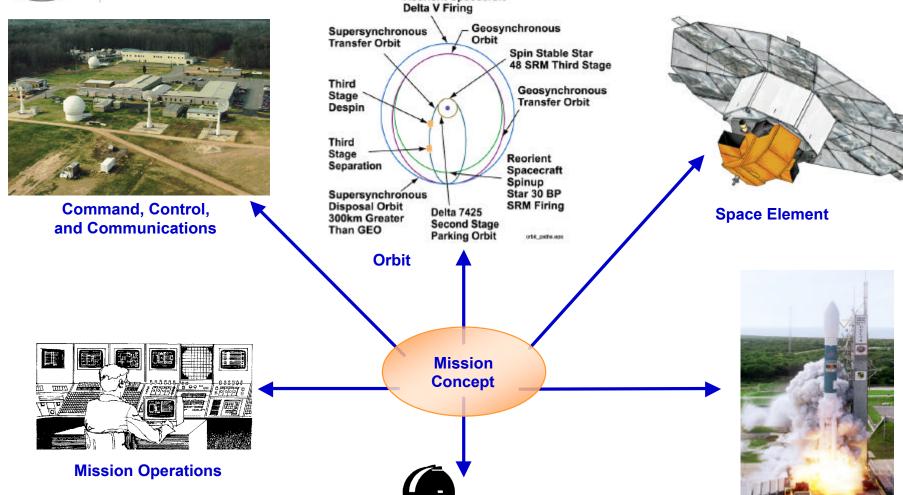


Operations

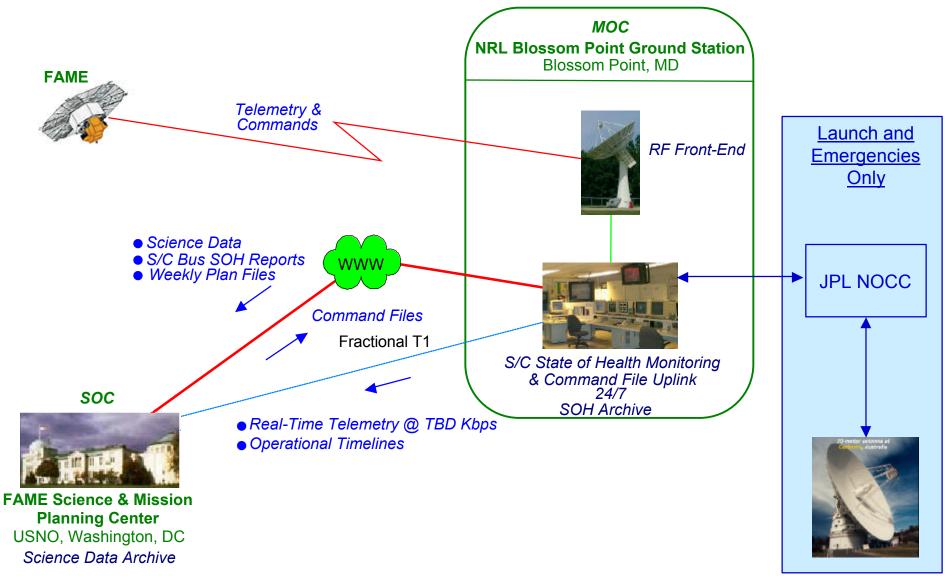
Mission Operations (Blossom Point)

Patty Klein
Ground System Development Lead
NRL
202-767-6636
pklein@ssdd.nrl.navy.mil



Mission Operations Architecture

Reorient Spacecraft


Launch Element

Operations Concept

Communications Performance Requirements

Data Rate: < 500 kbps; < 1 Msps

Bit Error Rate: < 10-6

End-to-End Delay: Minimize; No Specific Latency Requirement

Ranging: Ranging and Range Rate Required

Anti-Jam: No Requirement

Nuclear Scintillation: No Requirement

Communications Operational Requirements

- Security: Unencrypted Uplink and Downlink; Auth Count Implementation
- Standardization: CCSDS-Compliant; Compatible With NASA's Deep Space Network (DSN)
- Backward Compatibility: Compatible With Current BP Architecture
- Access: Single
- Spacecraft Orbit: Elliptical e = 0.0071; Geosynchronous; i = 30°
- Spacecraft Mobility: None, After Completion of Orbital Slot Placement
- User-Terminal Characteristics: Fixed
- Channel Characteristics: Separate Virtual Channels for Bus SOH, Payload SOH, Mission Data

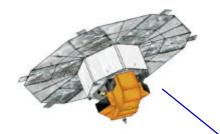
Communications System and Program Constraints

- System Constraints
 - Omni-Directional Spacecraft Antennas
 - Maximum Satellite Transmit Power = 2 W (EOL)
 - Downlink = S-Band
- Program Constraints
 - Use Current Technology
 - Use Non-Development Items to Maximum Extent Practical
 - Stay Within Allocated Budget

Downlink Communications at BP

Geosynchronous

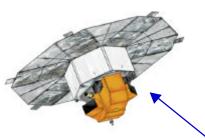
- Modulation Is BPSK Onto Carrier
- Reed-Solomon and Convolutional Coding
- Required Eb/No = 3.0 dB
- Margin > 3 dB


 R_d = 409.6 kbps, 800 bps P_t = 40.0 dBm BER = 10⁻⁶ f = 2.2-2.29 GHz S = 35786 km L_{fs} = 191.8 dB L_{Other} = 6.0 dB Rcv G/T = 22.3dB/K Minimum Elev Angle = 5°

Low Rate Downlink Communications at BP

- Modulation Is BPSK
- Reed-Solomon and Convolutional Coding
- Required Eb/No = 3.0 dB
- Margin > 3 dB

 R_d = 800 bps P_t = 33.0 dBm BER = 10⁻⁶ f = 2.2-2.29 GHz S = 35786 km L_{fs} = 191.8 dB L_{Other} = 8.8 dB

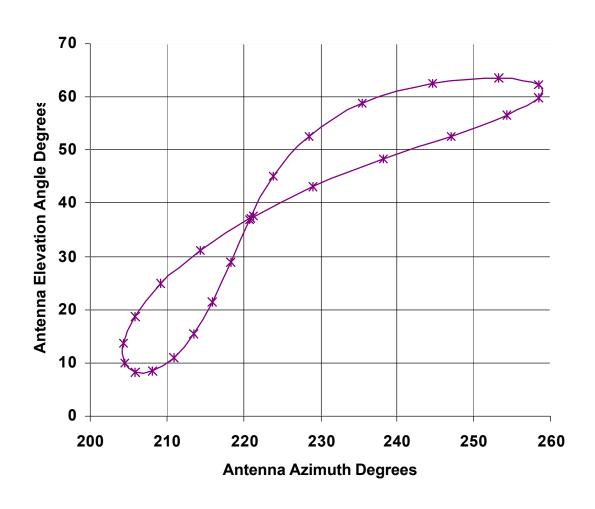

Rcv G/T = 22.3dB/K Minimum Elev Angle = 5°

Uplink Communications @ BP

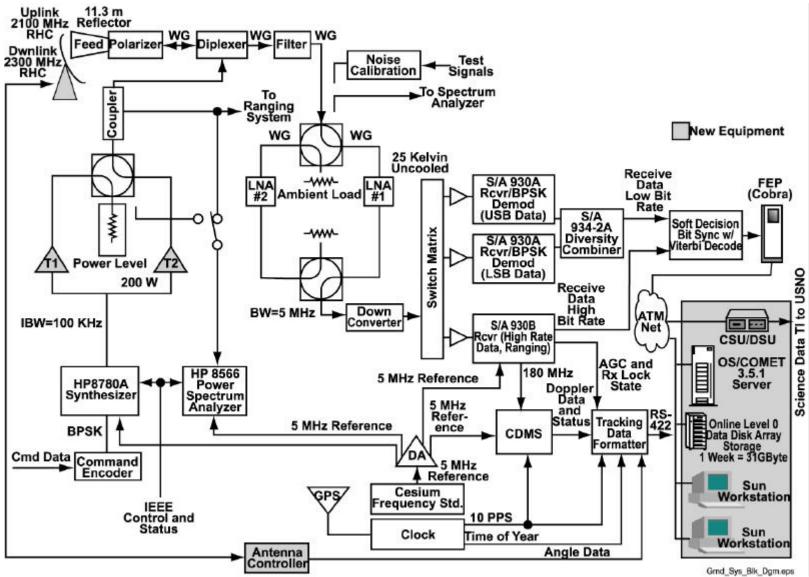
Modulation Is BPSK

Margin > 7 dB

Rcv Sensitivity = -118 dBm


 $R_u = 2.0 \text{ kbps}$ $P_t = 53.0 \text{ dBm}$ f = 2.0-2.1 GHz S = 35786 km $L_{fs} = 190.3 \text{ dB}$ $L_{Other} = 8.8 \text{ dB}$ G = 44.0 dBi

FAME View From BP



BP Ground Data System

Data Archival Volume

Data Rate	500	kbps
Data/Day	5.4	Gbytes
Data/Week	37.8	Gbytes
Data/Month	151.2	Gbytes

Includes Both SOH and Payload Data

Compatibility Testing

- Purpose: Ensure End-to-End Compatibility Conducted Prior to Launch
- Goal: Exercise All Ground System and Mission Operations Elements in Flight Ops or Near-Flight Ops Configuration
- Tests May Include:
 - Pre-Compatibility Test (PCT)
 - Conducted With Transponder at Manufacturer's Plant Before Acceptance
 - 1 Day
 - Factory Compatibility Test (FCT)
 - Conducted With Integrated S/C at NRL
 - 5 Days
 - End-to-End Test (ETE)
 - Conducted With Integrated S/C at NRL or at Launch Base
 - Could Be Combined With FCT
 - 1 5 Days
 - Launch Base Compatibility Test (LBCT)
 - Conducted With Integrated S/C at Launch Base
 - 1/2 Day

Documentation

- Ground Software Software Requirements Specification
- Mission Data Handling and Archive Plan
- Ground Segment Description Document [NCST-D-FM016]
- Space to Ground ICD [NCST-ICD-FM003]
- FAME On-Orbit Handbook

Ground System Trades

Function	Considerations/Constraints	Trades	
Data Transport and Delivery	Quantity and Rates of Data	Process Telemetry at Ground Station vs Control Center	
	Location of Ground System Elements	Choose Type of Communication Links	
	Compatibility Between Space and Ground Elements	Design s/c for Compatibility vs Modify Ground System	
Mission Control	Complexity of mission	Shared vs Dedicated Resources	
	Operations and Maintenance Philosophies	Redundancy vs Allowable System Downtime	
Spacecraft Planning and Analysis	Complexity of Spacecraft Bus	Level of Ground Automation	
	Orbit	Sophistication of Software	
Payload Planning and Analysis	Type of Payload	Level of Onboard Autonomy	
	Orbit	Level of Ground Automation	
Data Processing	Location of Users (Co-Located or External)	Process Data in MOC vs Dedicated POCC	
	Quantity of payload data	Process Data in Real Time vs Post-Pass	
Navigation Planning and Analysis	Orbit	Internal vs External Orbit Determination	
	Required Knowledge of Orbit	Ground vs Onboard Processing	
		Antenna Angle Data Only vs Ranging and Doppler Systems	
Archiving	Quantity of Data	Store Raw vs Processed Data	
	Compatibility With Existing Recorders	Type of Storage Media	
	Duration of Storage	Type of Distribution and Location of Storage/Transportability	

Completed

Schedule

Orbit Determination

Alan Hope
OD Lead
NRL
202-404-8595
hope@ssdd.nrl.navy.mil

Requirements

- Velocity Knowledge: 1 cm/sec, Postprocessed
- Use BP as Primary Tracking Site
- Minimize Active Ranging and 2 Way Range-Rate

Baseline Approach

- Define Tracking Accuracy (Range, Range-Rate)
- Use Covariance Analysis and Monte-Carlo Simulation to Establish Tracking Requirements (ODEAS and Other Internal Tools)
- Recommend Tracking Implementation and Tracking Schedule to Meet Mission Requirements
- Determine Data Arc Length for Best Velocity Fit (4 Day Batch)

Trade Studies

BP 2-Way Range-Rate BP 2-Way Range (10m / 8hr)	2-Way RR Duration and Interval	Velocity Error Avg cm/sec	Velocity Error Max cm/sec
Noise: rr 3s 3 mm/s r 3s 3 m	1hr / 8hr	1.05	1.09
Bias: r 15 m			
Station Location Bias 1 m			
Noise: rr 3s 3 mm/s r 3s 3 m	1hr / 24 hr	1.12	1.19
Bias: r 15 m			
Station Location Bias 1 m			

Issues

- Range and Range Rate System Installed at BP Must Meet the Noise and Bias Requirements Assumed
- Is the 1 cm/sec Velocity Error an Absulute Maximum Number Over All Times?
- Is the 1 cm/sec Velocity Error a 1s, 2s, 3s Requirement?

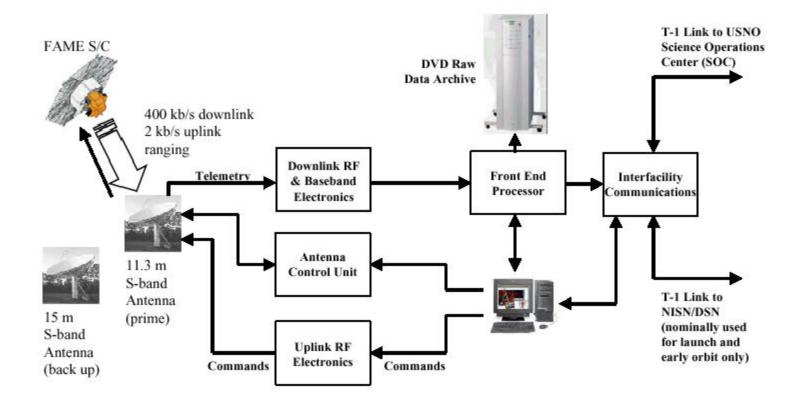
Schedule

- FY '01
 - Perform Trade Studies to Refine Tracking Requirements
 - Begin OD Simulations (ODEAS/OCEAN)
 - Establish Software Requirements and Data Formats
- FY '02
 - Work With Science and Ops to Define Data and Refine Requirements
 - Continue OD Sims
 - Start Integration of OCEAN at MGS
 - Establish QC Requirements for OD Ephemeris
- FY '03
 - Continue OD Sims
 - Complete Integration of OCEAN at MGS
 - Conduct Rehearsals
- FY '04
 - Conduct Rehearsals
 - Support Early Operations and System Checkout
 - Perform Daily Ephemeris Generation and Reporting (Through Mission Life)

Science Operations and Data Processing

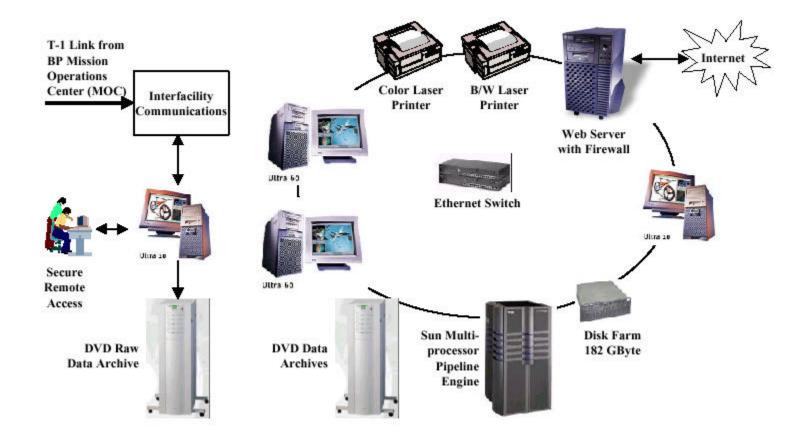
Ralph Gaume
Mission Operations and Data Analysis Lead
USNO
202-762-1519
rgaume@usno.navy.mil

Science Operations



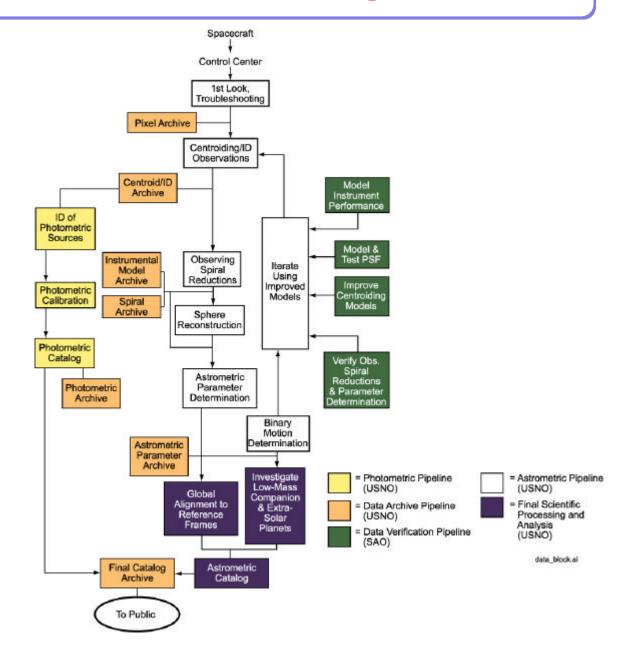
- Definition: Science Operations Begin When the Spacecraft Is Located at GEO, End When Spacecraft Is Moved to a Disposal Orbit
- Goal of Science Operations: Produce Catalog of 40 X 10⁶ Stars
 - Initial Catalog at End of NASA Funded Mission (2 1/2 Years)
 - Final Catalog at End of Mission (5 Years)
- Science Operations Center Located at U.S. Naval Observatory, DC
- BP Is Only Ground Site Required for Science Operations
- Attitude Control System Effectively "Disabled", Monitor Only Mode,
 Spacecraft Precession Driven Primarily by Solar Radiation Pressure

Mission Operations Center (BP)



Science Operations Center (USNO DC)

Science Operations



- MOC and SOC Are Connected by Dedicated T1 Link
- Raw Downlink Data Is (Identically) Archived at Both BP and USNO (Most Likely) on DVD: ~ 8 Tby Over 5 yr. SOC Verifies That Archives Are Identical
- Science Data Archives:
 - Centroid: Time, Location, Amplitude of Transit Events
 - Instrumental Model: Satellite Motion & Other Instrumental Parameters
 - Spiral: Positional Data From Each Observation
 - Photometric: Data From Photometric Pipeline
 - Astrometric Parameter: Position, Proper Motions, Parallaxes
- Archive Media Most Likely DVD
 - Final Catalog Most Likely Issued on DVD
- SOC Receives All Spacecraft Telemetry
 - FAME SOH Monitored by Both SOC and MOC
- MOC Operates the Spacecraft Bus, SOC Operates the Instrument, All Communications With Spacecraft Through the MOC
 - SOC Develops & Tests Instrument Tasking Scripts Which Are Transmitted Electronically to MOC for Eventual Spacecraft Upload

Data Flow Diagram

Science Data Processing (1 of 2)

- First Look & Troubleshooting: Spacecraft Data Must Be Immediately Checked After Downlink. Anomalies Must Trigger Recovery Activity
 - Image Detection
 - Image Quality
 - Satellite Attitude
- Centroiding:
 - Postage Stamp Pixel Data Telemetered to the Ground
 - Calibrate for Known Defects and Distortions
 - Centroid Image to 1/350 Pixel
- Observing-spiral Reductions
 - As Spacecraft Rotates & Precesses, CCD Maps an Observing Spiral on the Sky
 - Observing-spiral Reductions Will Characterize Spacecraft Motion and Temporal Changes in Instrumental & Spacecraft Parameters

Science Data Processing (2 of 2)

- Sphere Reconstruction: "Glue" Together the Independent Observing-spirals
 - Use Subset of Stars (Grid Stars); Point-like With Constant Space-velocities
 - Observations Modeled As Variables Expressed As Function of Astrometric Parameters (Position, Proper Motion, & Parallax), Observing-spiral Origins and Orientations, and Global Parameters (Nasties)
 - Iterate Until Observing-spiral and Global Parameters Converge
- Astrometric Parameter Determination: Make Weighted, Least-squares Fit to Observations for All Stars to Produce Astrometric Parameters
 - Examine Residuals for Peculiar Motions. Investigate...
- Global Alignment: FAME Frame Will Be Internally More Precise and Rigid Than Any Existing Celestial Reference Frame
 - However, Global Rotations May Still Exist, So Rotate Fame Frame Into the ICRS/ICRF
 - Observe As Many Quasars As Possible With FAME, and Radio Counterparts Where Possible (VLBA)
 - Observe Radio Stars With FAME and Radio Counterparts (VLBA & VLA-A+)